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ABSTRACT

This paper presents an automated, online approach to anomaly
detection in high-content screening assays for pharmaceutical re-
search. Online detection of anomalies is attractive because it offers
the possibility of immediate corrective action, early termination,
and redesign of assays that may require many hours or days to
execute. The proposed approach employs assay-specific image
processing within an assay-independent framework for distributed
control, machine learning, and anomaly reporting. Specifically, we
exploit coarse-grained parallelism to distribute image processing
over several computing nodes while efficiently aggregating suffi-
cient statistics across nodes. This architecture also allows us to
easily handle geographically-distributed data sources. Our results
from two applications, adipocyte quantitation and neurite growth
estimation, confirm that this online approach to anomaly detection
is feasible, efficient, and accurate.

Index Terms— Anomaly detection, biomedical image process-
ing, distributed database searching, high-content microscopy, Open-
Diamond® search platform

1. INTRODUCTION

The science of anomaly detection plays an increasingly important
role in pharmaceutical research organizations, both as a research tool
and as a process control tool. In research, experiments are designed
to systematically explore a large space of parameters and to detect
rare outcomes that merit deeper investigation. In process control,
anomaly detection is used to explore and discover metrics and meth-
ods that lead to more formal quality-control measures.

High-content screening (HCS) refers to those biological assays
that run with a high degree of automation, contain large numbers of
parallel experiments (typically 104–106), and primarily generate im-
age data for further analysis. For example, so-called silencing RNA
(siRNA) experiments may simultaneously use up to 30,000 RNAs to
investigate the knock-down of every known gene [1, 2]. Anomalies,
in this instance, may be those genes that cause unusual or important
phenotypes that are characteristic of a specific disease. Large chem-
ical libraries may substitute for siRNA-induced changes in pathway
fluxes in treated cells, leading to anomalies in cell morphology or
more deliberate fluorescence readouts. The same readouts used for
finding differences in cell functions may also hint about the quality
of the experiments themselves. For example, a loss of reagent po-
tency may lead to patterns in the cell expression that are anomalous
in a different and systematic manner.
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(NSF) under grant number CNS-0614679. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF, Carnegie Mellon Uni-
versity, Intel, or Merck. OpenDiamond is a registered trademark of Carnegie
Mellon University.

In this paper, we describe an automated, online approach to
anomaly detection in HCS assays. The term “online” refers to an
approach that naturally lends itself to data processing and anomaly
reporting in a continuous manner, while an HCS assay is still in
progress. This is in contrast to approaches that defer anomaly detec-
tion until the completion of the assay. Online anomaly detection is
attractive because it offers the possibility of early corrective action or
early termination and redesign of assays that may run continuously
for many hours or days. Our approach uses assay-specific image
processing within an assay-independent framework for distributed
control, machine learning and anomaly reporting.

2. A FRAMEWORK FOR ANOMALY DETECTION

Anomaly screening at interactive speeds requires the adaptive learn-
ing algorithm to be embedded in an efficient infrastructure for
compute-intensive image processing. This infrastructure is the
OpenDiamond® platform for distributed search [3,4], which cleanly
separates assay-specific and assay-independent aspects of image
processing. The assay-specific image processing for an application
defines a set of descriptors that determines the types of anomalies
that are detectable. An anomaly is statistical outlier with respect to
the descriptor set.

For each descriptor, OpenDiamond maintains a compact set of
statistics, namely, the mean and standard deviation accumulated in
the form of the count, sum, and sum of squares. A compact data rep-
resentation is needed for performance: the size of the descriptor data
must be constant with respect to the number of images processed.
For online anomaly detection, an initial estimate of each descrip-
tor is created by processing a number of images determined by a
configurable priming count. These initial images are not subject to
anomaly detection, but may be revisited and reprocessed later in the
session. Descriptor statistics accumulated during a session can be
saved and reused for future examinations of the data set.

Our framework is well suited for parallel computation since
OpenDiamond supports distribution of data and processing over
many servers. Each server processes a subset of the data inde-
pendently of other servers. The client coordinates the sharing of
descriptor statistics across servers by periodically collecting, aggre-
gating, and distributing these statistics. Since the time to perform
sharing is typically less than the time to process a single image, there
is little skew across servers and hence no loss of statistical accuracy.
The sharing period is configurable, with a default of 5 seconds.

Image processing is performed on servers through code com-
ponents called searchlets. The searchlet is logically part of an ap-
plication, the remainder of which runs on a client for user inter-
action. Descriptor statistics are calculated by the searchlet as part
of image processing. The searchlet examines the existing descrip-
tor statistics to determine if an image is anomalous, and if so, it
writes additional data called attributes that indicate the nature and
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(a) Normal (b) Anomalous

Fig. 1. Example Adipocyte Images

extent of the anomaly. Only anomalous images are transmitted to
the client. OpenDiamond accomodates a variety of implementation
methods for image processing. For example, the searchlet code for
adipocyte images, described in Section 3.1, is implemented in C++.
In contrast, the searchlet code for neurite images, described in Sec-
tion 3.2, is implemented as a collection of ImageJ macros [5].

3. APPLICATIONS

We have validated our framework by applying it to two different
problems: adipocyte quantitation and neurite growth estimation.

3.1. Detecting Anomalies in Adipocyte Images

Adipocytes, or fat cells, serve as reservoirs of energy in humans and
are tightly regulated both in size and number. Significant alteration
in body mass involves changes in both adipocyte size and number.
In the field of lipid research, techniques are needed to locate and
quantitate adipocytes in large repositories of cell microscopy images.

3.1.1. Data Collection

This work is based on high-resolution images of unfixed live
adipocytes in suspension. Example images are shown in Figure 1.
A live adipocyte suspension was prepared using collegenase to sep-
arate the cells from adipose tissue. A small drop of the suspension
was placed on a slide with a circular ridge of silicone grease. The
cells typically floated to the top of the drop, where they could be
viewed on a Nikon Diaphot microscope and photographed with a
14-megapixel Kodak DCS Pro14n digital camera.

3.1.2. Image Processing

Because adipocytes in suspension are typically circular, they are
located in the images by searching for elliptical objects. Quantita-
tion is semi-automated; an investigator defines a reference adipocyte
that takes into account variations in cell size, shape, and focus.
Adipocytes are located as follows:

1. An image pyramid is built by scaling down the high-resolution
images. The pyramid is necessary because the ellipse extrac-
tion algorithm is overly sensitive to scale. The next two steps
are applied independently to each level of the pyramid.

2. A Canny-style edge detector is applied that uses color con-
trast gradients rather than grayscale contrast. A standard
grayscale Canny detector was evaluated, but the color con-
trast variant provided better results.

3. The resulting binary edge images are used as input to an el-
lipse extraction algorithm that can locate overlapping and par-
tially occluded cells [6]. This algorithm works well with
noisy and incomplete data and is much faster than a Hough
transform.

Fig. 2. Screenshot of Anomaly Detection Application

4. The results from all pyramid levels are merged. Ellipses
found in scaled-down parts of the pyramid are scaled back
up to match the original image size. A non-maxima suppres-
sion heuristic is employed to identify and eliminate idential
ellipses that were detected in multiple pyramid levels.

5. Statistics such as the cell count and cell size distribution are
tabulated.

Further details on adipocyte detection appear in Goode et al. [7].
Anomalies in the adipocyte images are detected based on the

cell count, the fraction of the image covered by cells, and the first
four statistical moments of cell size and shape (eccentricity). Fig-
ure 2 shows an application for detecting anomalies in adipocyte im-
ages based on the framework described in Section 2. The user se-
lects descriptors on the left panel, configures the priming count, and
starts the search. Anomalous images are shown as the search pro-
gresses. In the example shown, approximately 3% of the 1697 im-
ages searched were declared anomalous.

3.2. Detecting Anomalies in Neurite Images

Cells of the central nervous system, such as neurons and oligoden-
drocytes, have neurite processes that are involved in the synaptic
function of nerves. Many human cognitive diseases cause or result
in the degradation of neuronal cell health. In vitro imaging assays
using cell culture models can utilize the status of neurites as a sur-
rogate measure of cell health. The ability to measure neurite out-
growth enables identification of compounds or siRNAs that influence
cell health or survival; increased neurite number and length corre-
spond to increased cell health. In typical cell microscopy images
(Figure 3), neurites appear as low-contrast linear features branching
from high-contrast neuron bodies.

3.2.1. Data Collection

This work uses neuronal stem cells, which have the ability to differ-
entiate into cells of the central nervous system (neurons, astrocytes
and oligodendrocytes). As these undifferentiated neuronal stem cells
undergo the differentiation process, they extend neurites. The length
of the neurites is a measure of the differentiation state.

Neuronal stem cells were routinely cultured in the undifferenti-
ated state using a defined growth media containing RHB-A media
(Stem Cell Sciences; Cambridge, UK), supplemented with FGF2
and EGF (Peprotech; Rocky Hill, NJ). To image undifferentiated
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(a) Undifferentiated cells (b) Segmented undiff. image

(c) Differentiated cells (d) Segmented diff. image

Fig. 3. Examples from the neurite growth domain. Two conditions
from the same well are shown (temporally spaced): undifferentiated
cells (a) and differentiated cells (c). The segmented versions of those
images are shown in (b) and (d), respectively; detected neurites are
evident as bright linear features, cell bodies as dark spots.

neuronal stem cells, cells were seeded on uncoated 384 well plates
in growth media. After 24 hours, cells were fixed in a final solution
of 4% paraformaldehyde. To image differentiated neuronal lineages,
cells were seeded on Laminin coated 384 well plates in growth me-
dia for the first 24 hours. After 24 hours, media was changed to
differentiation media which was similar to that of growth media, but
only supplemented with low amounts of FGF2. Media was changed
every 2 days for the entire differentiation period. Differentiation
periods took place over 1–3 weeks, followed by fixation with 4%
paraformaldehyde. Brightfield images were captured on an ImageX-
press Micro (Molecular Devices, Sunnyvale, CA) using a 10x Nikon
Plan Fluor DL objective.

Since neurites can exhibit significant 3D structure, it is possible
that a single focal plane may fail to image all of the cells. Thus, im-
ages were obtained for 5 focal planes. The first image was captured
at the focal plane that was optimal for the majority of cells. Addi-
tional images were captured on either side of this optimal plane, two
on each side at equidistant intervals. The exposure settings for all of
images were kept constant.

3.2.2. Image Processing

Anomalies in neurite images are evidenced by differences between
expected and observed attributes, such as numbers, shapes, or den-
sity of neurites. Specifically, we characterize anomalies according
to the following criteria: total number of neurites observed in the
image; the aggregate lengths of these neurites; the number of cells
(identified by cell bodies) detected in the image; the average size
(area in pixels) occupied by such cells; the ratio of neurites to cell
bodies; the total area of the image occupied by neurites; and ratio of
neurite area to neural cell body area.

The image processing required to extract these attributes is sum-
marized as follows: first we find cell bodies, then we find neurites.
Specifically:

1. The 5 focal plane images are merged into a single image by
computing the median value at each pixel location.

2. Non-uniform background illumination is corrected by fitting
a second-order polynomial to the image and subtracting.

3. A straightforward adaptive thresholding procedure is ap-
plied that exploits the fact that cell bodies correspond to
high-intensity regions in the image.

4. Once the image has been thresholded, a watershed procedure
teases apart clumped cell bodies.

5. Cell bodies within a specified size and eccentricity parametrs
are extracted using a standard connected components opera-
tion.

6. Once the cell bodies have been identified, we measure them
according to the attributes described above.

7. Using the segmented cell bodies as a mask, the relatively low
contrast between neurite pixels and the background becomes
sufficiently distinct to enable segmentation.

8. A series of classical image processing steps (morphological
filtering followed by connected components analysis) then
produces a usable set of neurites. Neurites can still occasion-
ally be oversegmented into multiple components, but our ex-
periments indicate that this bias is not sufficiently severe as to
impair the detection of anomalies.

9. We compute statistics from the extracted neurites.

An example of the first steps of multi-focal plane processing is illus-
trated in Figure 4.

4. EVALUATION

We compare our online distributed approach against traditional
anomaly detection, both in terms of accuracy and speed, on each of
our two application domains.

Our first set of experiments (Figure 5) explores how the size of
the priming set affects accuracy. We characterize accuracy both
in terms of false positives (normal images incorrectly flagged
as anomalous) and false negatives (anomalous images that were
missed). We define ground truth to be the output of a two-pass
offline anomaly detection system that gathers statistics over the en-
tire data set in the first pass and identifies anomalies in the second
pass. The priming set in our approach consists of those images that
are used to seed the initial parameter estimates (the priming set is
distributed across servers). The reported accuracy is measured on
the remaining images in the dataset. The adipocyte dataset contains
1697 images and the neurite dataset contains 1062 images. Con-
sistent with our expectations, the accuracy of the system improves
quickly with the size of the priming set; this is important since in
practice the priming set should be as small as possible.

The second set of experiments confirms that anomaly detection
can be distributed over multiple compute/storage nodes without loss
of accuracy. Although no single node can access the entire dataset,
the sharing of descriptor statistics enables each node to build suffi-
ciently accurate models for anomaly detection. We see no loss of ac-
curacy in our 8-node distributed system; this is also true with greater
numbers of nodes. Our approach is very amenable to parallelism
and we observe near-linear scaling of performance with the number
of nodes in the system (results not shown due to space limitations).

5. CONCLUSION

In the future, we plan to extend our work to larger image reposi-
tories and to other types of HCS images. We also plan to extend
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Fig. 5. Accuracy of online anomaly detection improves quickly with the size of the priming set

(a) Five focal views from a single neurite well

(b) Composite neurite image with
focal planes merged and back-
ground illumination corrected

Fig. 4. Multi-focal plane brightfield neurite images.

our anomaly detection framework to incorporate more sophisticated
distributions such as mixtures-of-Gaussians and non-parametric rep-
resentations such as histograms.

In closing, this work has presented an automated, online ap-
proach to anomaly detection in high-content screening assays for
pharmaceutical research. This approach employs assay-specific
image processing within an assay-independent framework for dis-
tributed control, machine learning, and anomaly reporting. Our
results confirm that this online approach to anomaly detection is
feasible, efficient, and accurate.
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